در جلسات قبل با مفهوم multi label classification آشنا شده و یک نمونه از پیاده سازی آن را در فریم ورک کراس مشاهده کردیم.
Multi Label Classification
به طور خلاصه میتوان گفت در single label classification ما به طور همزمان تنها میتوانیم یک کلاس به عنوان پاسخ داشته باشیم مثلا گربه یا سگ اما در multi label classification میتوان همزمان چند جواب داشت مانند تصاویر ماهواره ای که در آن ها میشود همزمان رودخانه، کوه، جنگل و … را مشاهده کرد.
پیاده سازی multi label classification در فریم ورک کراس برای ما محدودیت هایی به همراه داشت که مهمترین آن این است که در کراس ما باید به ازای هر label یک پوشه داشته باشیم که این مسئله زمانی که تعداد کلاس های ما زیاد میشود و ما میخواهیم هربار ترکیبات مختلفی از این کلاس ها را به عنوان label نهایی داشته باشیم برای ما مسئله ساز میشود.
شبکه های اجتماعی