مقدمه ای بر یادگیری ماشین (Machine Learning)

به عنوان یکی از شاخه‌های وسیع و پرکاربرد هوش مصنوعی، یادگیری ماشین به تنظیم و اکتشاف شیوه‌ها و الگوریتم‌هایی می‌پردازد که بر اساس آنها رایانه‌ها و سامانه‌ها توانایی تعلّم و یادگیری پیدا می‌کنند.هدف یادگیری ماشین این است که کامپیوتر (در کلی‌ترین مفهوم آن) بتواند به تدریج و با افزایش داده‌ها کارایی بهتری در انجام وظیفه مورد نظر پیدا کند. گستره این وظیفه می‌تواند از تشخیص خودکار چهره با دیدن چند نمونه از چهره مورد نظر تا فراگیری شیوه گام‌برداری روبات‌های دوپا با دریافت سیگنال پاداش و تنبیه باشد. 

برخی از روش های یادگیری ماشین

الگوریتم های یادگیری ماشین اغلب به عنوان نظارت شده یا نظارت نشده و تقویتی دسته بندی می شوند.

1.یادگیری نظارت شده یا Supervised Learning :

الگوریتم های یادگیری ماشین تحت نظارت می توانند آنچه را که در گذشته آموخته شده است به منظور پیش بینی رویدادهای آینده با استفاده از مثال های برچسب گذاری شده برای داده های جدید اعمال کنند. با شروع فرایند تجزیه و تحلیل یک مجموعه داده‌ شناخته شده، الگوریتم یادگیری، یک تابع انتزاعی برای پیش بینی مقادیر خروجی تولید می کند. سیستم می تواند اهداف هر ورودی جدید را پس از آموزش کافی فراهم کند. الگوریتم یادگیری همچنین می تواند خروجی خود را با خروجی صحیحِ در نظر گرفته شده مقایسه کرده و به منظور تغییر مدل، خطای خود را پیدا کند. مسایل این روش به دو دسته Classification و Regression تقسیم بندی می شوند که در مسایل Regression متغیر خروجی مقادیر پیوسته را می گیرد و بیشتر این مسایل به تخمین زدن یا پیش بینی یک پاسخ مربوط است ولی در مسایل Classification متغیر خروجی کلاسی از برچسب ها (Labels) را می گیرد و بیشتر به تشخیص این که داده ها به کدام گروه ها یا کلاس ها تعلق دارند، می پردازد.

 

2.یادگیری بدون نظارت یا Unsupervised Learning :

الگوریتم های یادگیری ماشین بدون نظارت زمانی استفاده می شود که اطلاعات مورد استفاده برای آموزش، طبقه بندی و برچسب گذاری نشده اند. در یادگیری بدون نظارت، ماشین یاد می گیرد که چگونه سیستم ها می توانند یک تابع را برای توصیف یک ساختار پنهان از داده های بدون برچسب داشته باشند. سیستم، خروجی درست را تشخیص نمی دهد، اما این داده ها را بررسی می کند و می تواند نتیجه گیری از مجموعه داده ها را برای توصیف ساختارهای پنهان از داده های بدون برچسب به کار بگیرد.

 

 

3.یادگیری تقویتی یا Reinforcement Learning :

الگوریتم های یادگیری تقویتی، یک روش یادگیری است که با تولید عمل ها و کشف اشتباهات و پاداش ها با محیط خود ارتباط برقرار می کند. بازخورد آزمایشی و خطا و پاداش تاخیر بیشتر مربوط به یادگیری تقویت است. این روش به ماشینها و عوامل نرم افزاری اجازه می دهد تا به طور خودکار رفتار مطلوب را در یک زمینه خاص به منظور به حداکثر رساندن عملکرد آن تعیین کند. بازخورد پاداش ساده برای عامل به منظور این است که یاد بگیرد که بهترین عمل کدام است؛ این به عنوان تقویت کننده سیگنال شناخته شده است.